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Abstract 

Despite the advancements in sensor technologies, machine learning algorithms, and the 

broader Internet of Things (IoT), one critical component often remains neglected—the 

human element. Understanding Occupant Behavior (OB) is a complex but essential 

aspect of making smart systems truly "smart." It's not enough for buildings to be 

technologically advanced; they must also be capable of adapting to the needs and 

behaviors of the people who inhabit them. There have been many occupant behavior 

models developed for building design and controls, yet without a comprehensive 

framework or standard showing how those models are documented and implemented in 

fields. This document aims to fill this gap through: 

1) developing a framework to document occupancy and occupant behavior models for 

building performance simulation, and emphasizing the importance of capturing the 

multidimensional aspects of human behavior. It consists of four blocks (description, 

development, evaluation, and implementation) and can be also regarded as a guideline 

to help researchers in the development, testing, implementation and transparent 

communication of their models. 

2) developing a guideline to document occupant behavior models for advanced building 

controls by detailing how well-documented OB models can be operationalized to enhance 

building performance in real-time, and by presenting a model-evaluation schema that 

enables benchmarking of different models in field settings. Further, recommendations are 

given on how OB models are integrated into the building system. The framework is jointly 

developed by occupant behavior modelers and experts as part of the IEA EBC Annex 79 

dedicated to occupant-centric building design and operation. 
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1. Introduction 

1.1. Motivation 

In the emerging field of intelligent building systems and smart cities, Occupancy and 

Occupant Behavior (OOB) and Occupant Behavior (OB) models play a critical role, 

serving as the backbone in both Building Performance Simulation (BPS) and Advanced 

Building Controls (ABC). As the research landscape expands, the gap between academic 

insight and real-world application is becoming increasingly evident. This disconnect 

primarily stems from the absence of standardized documentation and guidelines. 

Standardized documentation acts like a universal language, simplifying the 

communication among researchers, developers, and practitioners. Without it, the 

reproducibility of scientific research is jeopardized. Researchers may find it challenging 

to build upon previous work, leading to inefficiencies such as duplicated efforts or the 

overlooking of promising avenues of research. This lack of a consistent framework can 

severely hamper the scientific process, causing delays in the development and 

refinement of OOB and OB models. 

Moreover, inconsistent or absent documentation can severely undermine the confidence 

of practitioners and stakeholders, including architects, engineers, and policy-makers. If 

they cannot rely on a clear set of guidelines, it makes it difficult for them to assess the 

validity and utility of these models. This, in turn, affects their willingness to integrate such 

models into real-world projects, from individual intelligent building systems to larger smart 

city initiatives. This hesitancy is a significant barrier to the adoption of advanced 

technologies that could make buildings more efficient, sustainable, and responsive to 

human needs. 

1.2. Standardization in OB Modeling and Documentation 

The landscape of Occupancy and Occupant Behavior (OOB) and Occupant Behavior 

(OB) modeling is like a blend of pieces from various sets; they may be intriguing on their 

own but don't quite fit together. While there has been an influx of predictive data-driven 

OB models in the state-of-the-art, the missing link is a standardized framework for 

documenting these models. This omission makes it extremely challenging to plug these 

models into existing or emerging building control systems. 

This lack of standardization has far-reaching implications. First, it throws a wrench into 

the replicability of models. Researchers coming onto the scene have to invest more time 

understanding each predecessor's unique approach, instead of focusing on innovation 

and improvement. This fragmented landscape is not just a bottleneck for academic 

progress but also a deterrent for newcomers to the field. 
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Additionally, practitioners in advanced building controls and Building Performance 

Simulations (BPS) face a similar issue. They may come across a potentially 

groundbreaking OB model but find themselves navigating a puzzle of inconsistencies, 

unclear methodologies, and absent documentation. This messiness undermines their 

confidence in adopting these models for real-world applications, which is counter-

productive to the entire goal of advancing intelligent building systems and smart cities. 

In essence, the absence of a unified documentation framework has become a significant 

roadblock, stalling both academic inquiry and practical application. It's like having cutting-

edge tools but no manual on how to use them together; the potential is there, but the 

execution is hampered. 

1.3. The Need for a Unified Approach 

It's evident from prior studies that the lack of a unified approach for describing, 

developing, evaluating, and implementing OOB and OB models has resulted in their 

limited application in real-world settings. Researchers often struggle to communicate the 

nuances of their models transparently, making it difficult for other researchers to replicate 

or build upon their work. Practitioners are left with a fragmented understanding of which 

models are suitable for different applications, owing to inconsistent documentation 

practices. Thus, there is an unmet need for a comprehensive guideline that bridges this 

gap between academia and industry. 

This led to the present guideline which is to serve as a comprehensive resource for 

documenting and implementing Occupant Behavior Models. The first part is specifically 

focusing on the Building Performance Simulation sector. The goal is to create a standard 

method for describing, developing, evaluating, and implementing Occupancy and 

Occupant Behavior (OOB) models. By standardizing these aspects, the guide aims to 

add rigor and transparency, making it easier for stakeholders to compare and implement 

these models in various simulation scenarios. The second part of the guideline delves 

into Advanced Building Controls. It provides directions on how to effectively document 

and implement OOB models that can be incorporated into real-time or predictive control 

systems. This section is designed to facilitate the integration of OB models into existing 

or new building automation systems, thereby enhancing their applicability in practical, 

real-world settings. Figure 1 shows the overall methodology used in the guideline 

document. 
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Figure 1: Flowchart describing methodology used in guideline document 

 

2. Building Performance Simulation  

2.1 Review of OB models for Building Performance Simulation  

The importance of OB in building energy consumption is often ignored. OB is often 

oversimplified in Building Performance Simulation (BPS), leading to discrepancies 

between actual and simulated energy use. There are various OB model categories that 

are being used to improve the simulation: 

 

Probabilistic or Stochastic Modeling: Includes Markov chain models, Bernoulli process, 

and survival analysis. These models are effective in capturing the dynamic nature of 

OB, particularly in long-term schedule formation. 

 

Statistical Modeling: These models establish numerical relationships between OB and 

various parameters such as indoor and outdoor conditions. They are commonly used for 

light switching and window opening behaviors. 
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Data Mining Approaches: Useful for identifying patterns and information from large 

datasets. Techniques like decision trees, Bayesian networks, cluster analyses, and 

association rule mining are used to estimate and identify OB patterns. 

 

Agent-Based Modeling (ABM): Involves independent actors ("agents") interacting based 

on predefined behavioral rules. ABM is effective in modeling diverse and dynamic 

energy usage trends among occupants. 

 

There are various methods that can be employed to integrate these models to a 

simulation tool. Some of the methods include using user-defined profiles and rules 

approach, use customized functions or codes, and using co-simulation. In order to 

gather and evaluate information on description, a literature review was performed. In 

total 86 papers were selected for the review. There were very few studies published 

before 2005 but a noticeable increase was observed later. 

 

In the domain of applicability, the literature review revealed significant gaps in the explicit 

delineation of both temporal and spatial scales. Starting with the temporal scale, nearly 

half of the studies (45%) do not specify the time-step at which their model operates. This 

omission hampers the ability to assess the model's adaptability to scenarios requiring 

different time resolutions. Additionally, more than half (57%) of the papers do not mention 

the temporal scale, which could range from seconds to years. This lack of information 

severely limits the model's potential for broader application and makes it difficult to 

evaluate its effectiveness in simulating real-world conditions over time. Moving to spatial 

scale, the data reveals a strong inclination towards smaller scopes. A significant 21% of 

the papers focus solely on a room-zone level, making these models less adaptable to 

comprehensive building or multi-building analyses. Similarly, 28% concentrate their 

efforts at the building level, which, while broader, still restricts the model's applicability to 

larger urban or district contexts. It is noteworthy that a meager 3.5% of the models venture 

into district or urban scale simulations. This limited foray into larger spatial contexts 

underscores a missed opportunity to explore more integrated, system-level interactions 

and their impact on building performance. 

 

In terms of modeled outputs, most studies are singularly focused, with 67% covering only 

one output category like appliance use or window operation. Multi-category models are 

rare, accounting for just 33% of the total. These limitations suggest a compartmentalized 

approach that may overlook the interconnectedness of various occupant behaviors. The 

requirement for input variables shows an even more striking imbalance. Physical and 

contextual inputs dominate, being utilized in 60% of the reviewed models. However, less 

than 10% incorporate physiological or psychological parameters, which could be critical 

for more nuanced and realistic simulations. 
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In summary, the existing OB models in building performance simulation often suffer from 

a lack of specificity in purpose and applicability, a narrow focus on modeled outputs, and 

a limited range of input parameters. These gaps present both a challenge and an 

opportunity for future research to build more comprehensive and effective models. 

2.2 Documentation of Occupant Behavior Models  

2.2.1. Model Description 

Introduction and Scope: Occupant Behavior (OB) models serve to capture and predict 

the actions and choices of individuals or groups in indoor environments. The primary 

objective of these models may range from enhancing energy efficiency and sustainability 

to optimizing occupant comfort and health. This section should clearly state the goals and 

application range of the model, be it residential, commercial, or special-purpose buildings. 

Key Variables and Assumptions: Critical to any model's success is the identification 

and description of key variables such as occupant density, location, activity type, window 

operations, HVAC settings, and lighting conditions. The key input variables can be 

categorized into multiple categories identified in Fabi’s review [1]. For example: 

Physical variables: Indoor air temperature, indoor transmitted solar radiation, outdoor 

relative humidity and rain. 

Physiological variables: Occupant age, gender. 

Psychological variables: Occupant habits and attitudes. 

Contextual variables: (the collection of the inputs related to context): arrival/departure, 

socio-demographics, time of day, type of day. 

The assumptions underpinning the model, such as constant temperature or humidity, 

should also be stated explicitly for clarity.  

2.2.2. Model Development 

Data Collection: The data used for model development and validation should be clearly 

identified and sourced. Information regarding whether the dataset is external or 

developed in-house should be disclosed. If external data are used for validation, the 

source should be cited and its relevance to the model explained. Data related to physical 

variables are collected using sensors. This includes temperature, humidity, pollutant, 

solar radiation etc. Other types of data can be collected using surveys. 

Feature Selection: After data collection process, it is important to determine the features 

based on certain criteria as described below. These criteria for variable selection has 
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been explained by Heinze [2]. First the “Significance criteria” should be determined. This 

is the most popular criteria for variable selection and includes hypothesis tests like Wald 

test’s p-value etc. Another criterion is “Change-in-estimate criterion”, which examines the 

relative percentage change in the parameters of the remaining variables when one 

variable is removed. Another feature selection criterion is selecting a model from a set of 

models rather than variable selection. This is referred to as “Information criteria”. Other 

criteria include “penalized likelihood” which uses the techniques like lasso regression and 

“background knowledge” where variables are selected using intuition derived from 

expertise in a particular domain. 

Methodology: There are several algorithms, computational methods, or statistical tools 

used in model development including stochastic methods, Markov Chains, or Monte Carlo 

simulations.  

Constraints and Limitations: The model limitations include but are not limited to data 

inconsistencies, computational power requirements, and any assumptions that might not 

hold universally. These constraints can often impact the model's generalizability and 

robustness. Constraints can be introduced by limiting the scope of the applicability of the 

model. Some of the constraints are as follows: 

Spatial scale: The simulation spatial extension (room-zone, floor, district, urban) [3] 

Spatial resolution: The zonal destination of the model (room, household, floor, building) 

[3] 

Climate constraints: heating or cooling design models defined for particular months 

Building type: The dominant function of the building (example: residential, office, retail, 

educational, dormitory) 

2.2.3. Model Implementation 

Computational Environment: Given that only 17% of reviewed articles specify this, it 

becomes crucial to document the computational environment in which the model 

operates. Whether it's EnergyPlus, IDA ICE, MATLAB, or Python, the choice of simulation 

tool and programming language should be clearly stated [4]. 

Integration with Building Systems: It is important to understand how the OB model will 

interact with existing building systems. Whether it’s a plug-and-play solution or requires 

manual calibration, the integration process should be clearly described to aid end-users 

and researchers alike. 

Performance Specifications: Despite being neglected in most literature, computational 

specifications such as hardware requirements, runtime, and resource utilization should 

be provided for practical implementation and further development. 
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2.2.4. Model Evaluation 

Metric Type: The chosen metrics for model evaluation play a pivotal role in determining 

the effectiveness of the model. These metrics can vary in nature. Some are direct, such 

as the number of window operations, offering a straightforward measure of specific 

actions or features within the model. Others are indirect, like resultant energy 

consumption, which provides insight into the broader impacts or outcomes of the model's 

performance. The selection of these metrics is critical in painting an accurate picture of 

how the model behaves and performs in various scenarios. 

Evaluation Type:  The evaluation process varies in its temporal scope, from detailed 

minute-by-minute analyses to broader seasonal assessments. It includes different 

methods of comparison: aggregated for a comprehensive overview, and interval-by-

interval for a detailed, momentary analysis. This approach determines the model's 

performance across varying time frames and provides insights into its predictive 

accuracy. 

Statistical Tools:  In model evaluation, various statistical tools are used, including 

Pearson's correlation coefficient, RMSE, and confusion matrices. Each tool is chosen for 

its relevance to the model's goals, like measuring linear relationships or quantifying 

prediction errors, thereby ensuring a comprehensive assessment of the model's 

performance. 

Feedback Challenges: Model feedback loops, wherein the model's output influences its 

subsequent input, are a prevalent challenge in OB modeling. Figuring out how the model 

accounts for or plans to mitigate this feedback issue is crucial. 

These methods of model evaluation are based on the work of Mahdavi & Tahmasebi [5].  

3. Advanced Building Controls  

3.1. Review of OB models for advanced building controls 

Occupant Behavior (OB) models serve as a critical component in the development of 

advanced building control systems. These models focus on a range of behaviors, broadly 

categorized into six main areas: 

Appliance Use: Models predicting appliance use are often integrated with smart plugs 

and home automation systems. The control algorithms use predicted states to selectively 

power on or off appliances, optimizing for both energy usage and user convenience. 

Primary inputs like historical plug-load and occupancy are crucial for fine-tuning these 

automated controls [6], [7], [8]. 
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Lighting Operation: The predictions made by lighting operation models are translated 

into control actions through lighting management systems. For example, automated 

dimming or color adjustment can be executed based on the model's prediction, using 

input data on illuminance levels and occupancy to optimize for energy efficiency and 

comfort [9], [10], [11]. 

Occupancy Estimation and Prediction: Control systems use these models to 

determine HVAC settings, lighting, and even security features. For instance, if the model 

predicts low occupancy for a specific time of day, the control system might reduce HVAC 

output or dim the lights to conserve energy. Inputs like motion detection and CO2 levels 

are invaluable for these control adjustments [12], [13], [14]. 

Thermostat Adjustment: These models inform the control systems of optimal setpoints 

for indoor temperature, which is then automatically adjusted by the HVAC system. Inputs 

like real-time electricity pricing can even allow the control system to optimize for cost-

efficiency in addition to occupant comfort. 

Shading Operation: In automated building systems, shading models can be coupled 

with motorized blinds or tinting windows. Based on the predictions, the blinds could 

automatically adjust to let in more or less natural light, employing inputs such as 

temperature and illuminance levels for optimized control [15]. 

Window Operation: These models can be tied to automated window systems to control 

opening and closing mechanisms. Based on predictive data about temperature, humidity, 

and wind speed, the control system may decide to open windows for natural ventilation, 

thereby saving on HVAC costs [16]. 

In a fully integrated smart building, these models don't operate in isolation. They are often 

part of a centralized building management system (BMS) that takes multiple data streams 

as inputs to control various subsystems optimally. By synthesizing data from each of 

these occupant behavior models, the BMS can make more informed and nuanced 

decisions, enhancing both energy efficiency and occupant comfort in a synergistic 

manner. 

3.2 How should OB models be documented?  

3.2.1. Information representation 

The selection of a data structure or schema, such as IFC, gbXML, or Brick, is a critical 

decision that impacts the efficacy of handling various building elements [17]. These tools 

are chosen for their capability to effectively manage static elements, like building 

geometry, as well as dynamic elements, such as time-series temperature data. However, 

it's important to recognize the limitations or gaps present in these ontologies. A notable 
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area of concern is the representation of occupant behavior, which often lacks 

standardization. Furthermore, the use of metadata and terminology requires careful 

consideration. Specialized terms, particularly those related to occupant behavior, need 

clear definitions to ensure clarity and understanding. The naming conventions across 

different schemas are not always consistent, posing challenges for data integration and 

interoperability. This inconsistency underscores the need for a unified naming guideline, 

which could be proposed to harmonize data and enhance the universal applicability of the 

findings. 

3.2.2. Model inputs and outputs 

Outlining the different behavioral categories that the occupant behavior models are 

designed to address, such as Appliance Use, Lighting Operation, Occupancy Estimation 

and Prediction, Thermostat Adjustment, Shading Operation, and Window Operation is 

essential. It is important to provide a summary of the types of variables considered for 

each category: independent variables as inputs and dependent variables as outputs. 

Table 1 shows the commonly used inputs and outputs for various OB models. 

 

Table 1: Inputs and outputs of various OB models  

 

OB Model 
Category 

Inputs Outputs 

Appliance 
use 

Plug-load energy, Space’s 
occupancy status 

Multi-state of appliances, 
Energy consumption levels 

Lighting 
operation 

Illuminance levels, Occupancy 
status, Power consumption 

State of lighting (binary/multi-
state), Operation time 

Occupancy 
Estimation 

and 
Prediction 

Historical occupancy patterns, Motion 
detection, Power usage, Indoor 

environmental measures 
(illuminance, temperature, relative 

humidity, CO2, VOC levels) 

Presence status (binary), 
Number of occupants 

Thermostat 
adjustments 

Indoor/outdoor temperatures and 
humidity, Solar radiation, CO2 levels, 
Hour of the day, Electricity load and 

price 

Temperature setpoint setting, 
Indoor temperature, Probability 

of adjusting thermostat 
settings, Energy consumption 

Shading 
Operation 

Indoor/outdoor temperature, 
Illuminance, Solar radiation 

Shading state (binary/multi-
state), Probability of blinds 
position, Portion of blinds 

position 
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Window 
Operation 

Indoor/outdoor temperature and 
humidity, Wind speed and direction, 
Solar radiation, Rainfall, CO2 and 
particulate matter concentrations 

Probability of window state, 
Probability of action (e.g. 

opening/closing), Portion of a 
window open 

 

 

It's also suggested to use figures to enumerate and categorize these variables. For each 

behavioral category, the researcher needs to specify the common inputs and outputs. It 

is essential to understand why these variables are relevant and frequently appear across 

various models. Same is true for each behavioral category. For example, we know that 

for Occupancy Estimation, a wide range of inputs like motion detection, historical 

occupancy patterns, and environmental measures are used to predict the presence or 

number of occupants. This variety should be clearly highlighted to provide readers with 

an understanding of the range of variables that are considered relevant for each type of 

model. By structuring the documentation in this manner, readers will gain a 

comprehensive yet organized understanding of the inputs and outputs typically involved 

in occupant behavior models. This will be invaluable for both understanding existing 

models and potentially developing new ones. 

3.2.3. Domain of applicability 

When documenting the domain of applicability, it is imperative to cover both temporal and 

spatial dimensions in which the OB models operate. For example, when occupancy 

models are applied to building controls in the temporal dimension, addressing three key 

aspects: "Time Granularity," "Predictive Horizon," and "Control Horizon" is crucial.  These 

factors along with temporal and spatial domain are defined as follows: 

 

Control Horizon for OBC: This refers to the time span over which the control actions are 

optimized. In OBC, the control horizon is the duration for which the system plans its 

control strategies, like adjusting temperature or lighting. For example, an HVAC system 

might have a control horizon of a few hours, planning its operations based on the 

expected occupancy during that period. 

 

Predictive Horizon: This is the time frame over which the occupancy-based (OB) model 

makes predictions about the occupancy status. In simpler terms, it's how far into the future 

the system predicts whether a space will be occupied or not. This horizon can  

vary widely. Some systems might predict just a few minutes to an hour ahead, while 

others might look 24 hours into the future, especially in settings with predictable 

occupancy patterns. 
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Temporal Domain: This encompasses the aspects of time in which the OB models 

operate, like the time granularity, predictive horizon, and control horizon. Temporal 

domain is critical because it defines the time-scale at which the system operates and 

reacts. 

 

Spatial Domain: This refers to the physical space or the area in which the OB models are 

applied. It's about where in the building the controls are being implemented, like specific 

rooms, floors, or zones. The spatial domain can influence how the system behaves – for 

instance, controls in a rarely used conference room will differ significantly from those in a 

constantly occupied lobby. 

 

Statistical evidence should be provided, akin to a figure or a chart, showcasing the 

distribution of this aspect across the various models reviewed. For example, note that in 

models focused on lighting operation, time granularity might be less frequently 

documented. Next, it is important to determine the "Predictive Horizon" which is defined 

as the time frame over which the OB model aims to make predictions. After pointing out 

the variability in this factor, which can range from less than an hour to up to 24 hours, it 

is essential to specify that it is often dependent on the variable being controlled. Once 

again, supplementing this information with statistical data to show the frequency with 

which this parameter is documented in existing literature is advised. 

 

For a practical example, an office building using an OB model for its HVAC system is 

considered. The temporal domain might include a predictive horizon of up to 24 hours, 

based on the typical work schedule and meetings planned in the building. The time 

granularity could be in intervals of 15 minutes, adjusting the predictions based on real-

time occupancy data. The control horizon might be set for 3 hours, optimizing the 

temperature and air quality for the expected occupancy during that time. 

 

In the spatial domain, different zones of the building, like executive offices, general work 

areas, and meeting rooms, would have distinct control strategies based on their unique 

occupancy patterns. This spatial variability is key in tailoring the system for maximum 

efficiency and comfort. Documenting these domains with statistical evidence, such as 

figures or charts, will vividly illustrate the variations and commonalities among different 

OB models. 

 

3.2.4. Model Development 

When developing Occupant Behavior (OB) models, a thorough and structured approach 

is paramount. The process begins with data preparation, which involves cleaning the 

data to remove anomalies [18], filling in missing data using techniques like moving 
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averages or regression methods, and scaling the data through normalization methods 

such as min-max scaling [19], distribution-based standardization [20] or structure-based 

techniques [21]. This ensures the integrity and consistency of the data for accurate 

modeling. 

 

The next step is to select an appropriate model formalism. This includes rule-based 

models for well-defined patterns, statistical models like regression or Markov chains for 

capturing data trends, and data-driven models (such as neural networks) for complex 

behaviors with substantial datasets [22]. It's crucial to assess the chosen model's 

suitability for the specific building behavior, ensuring it accurately reflects occupant 

behavior dynamics. The implementation of the model involves developing algorithms or 

mathematical formulations tailored to the chosen model type and prepared data. A 

robust validation process, using real-world data or benchmark datasets, is essential to 

test and refine the model. 

 

Finally, transparent documentation of each step in the model development process is 

necessary. This should include detailing data preparation methods, algorithm 

development, and the validation process. Acknowledging limitations and identifying 

gaps in the current methodology is vital, as it guides future research towards enhancing 

the model's applicability and performance. This comprehensive approach ensures that 

OB models are not only accurately reflective of real-world scenarios but also replicable 

and adaptable for future advancements in the field. 

3.2.5. Model Evaluation 

The evaluation of Occupant Behavior (OB) models is a critical phase following their 

development, where the model’s performance is systematically assessed. This process 

is vital in ensuring the accuracy and reliability of the model in predicting occupant behavior 

in building environments. The evaluation primarily employs a variety of performance 

metrics, each serving a distinct purpose in assessing different aspects of the model's 

functionality. 

 

Performance Metrics play a central role in this evaluation process. Absolute Metrics such 

as precision, recall, and the F1 score quantitatively assess the model’s predictive 

accuracy, crucial in cases of data imbalance. F1 score is the harmonic mean of precision 

and recall. Precision is the measure of false positives whereas recall is the measure of 

false negative. Absolute metrics is also defined as “the metrics that are based on the 

absolute error calculation” [23]. For example, in a lighting control model, these metrics 

would determine how precisely the model predicts light usage or occupancy. Domain-

Specific Metrics delve deeper, leveraging an understanding of occupant behavior and 

building physics. They provide insights beyond basic accuracy, assessing the model’s 
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practical applicability in real-world scenarios. For instance, in models predicting window 

operation, these metrics evaluate not just the accuracy of window state predictions, but 

also the frequency and duration of window operations. Indirect Metrics, on the other hand, 

measure the model’s impact on broader building performance objectives like energy 

efficiency and thermal comfort, essentially gauging how changes in predicted occupant 

behavior patterns translate into tangible improvements in building operations. 

 

The Evaluation Process involves rigorous statistical validation, where the model is tested 

against known datasets or through controlled experiments to confirm its robustness. 

Scenario testing is also crucial, where the model is applied to various settings to evaluate 

its adaptability to different environmental conditions and occupant behaviors. Comparing 

the model with existing benchmark models provides a relative understanding of its 

effectiveness and areas needing improvement. Finally, comprehensive documentation of 

each step in the evaluation, including the rationale behind chosen metrics and the results, 

is essential. This ensures transparency, replicability, and provides a foundation for further 

research and development in the field. 

 

Through this structured and comprehensive approach, the evaluation of OB models not 

only verifies their accuracy but also their practical utility in real-world building 

environments, guiding improvements and innovations in future model development. 

 

3.2.6. Model Implementation 

Computational Environment: When documenting the implementation of OB models, 

especially in the context of building control systems, the computational environment 

should be specified at the beginning. It is important to be informed about the operating 

system (OS) on which the model was developed and tested. Furthermore, it is crucial to 

document information on the programming languages used and any libraries or software 

dependencies. Sometime the discrepancies in the versions of package can lead to errors 

and there are many modifications in methods. Thus, inclusion of version numbers for all 

of these elements will contribute to the reproducibility of the model.  

 

Experimental Setup: In this segment, it is important to discuss the types of sensors that 

were employed, their implementation locations, and the rationale behind these choices. 

Table 2 shows types of sensors, its use and implementation location. Tables should be 

used to organize this information, making it easy for future building operators to 

understand and implement.  

 

Table 2. Various sensor types and their use and implementation location 
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Sensor Type Use in OB Model Implementation Location 

Temperature 
Sensors 

Monitor indoor and outdoor 
temperatures for HVAC control 

models 

Placed both indoors and 
outdoors to capture 

environmental variations 

Occupancy 
Sensors 

Predict occupancy patterns and 
lighting controls, including motion 

detectors and infrared sensors 

Installed in strategic locations 
like entry/exit points and 

common areas 

Light Sensors Measure illuminance levels for 
lighting operation models 

Positioned in areas with natural 
light variability 

Humidity 
Sensors 

Gauge indoor and outdoor humidity 
levels, influencing HVAC operation 

models 

Distributed within and outside 
the building 

CO2 Sensors Assess indoor air quality and 
ventilation control 

Located in areas with variable 
occupancy rates, such as 
meeting rooms or lounges 

Energy 
Consumption 

Meters 

Track power usage of appliances, 
lighting, and HVAC systems 

Connected to key power-
consuming systems for detailed 

energy usage data 

 

 

Integration into Model Predictive Control (MPC): It is important to understand how the OB 

models integrate into MPC systems, particularly for HVAC control which is a common use 

case. It is vital to comprehend how the OB models contribute to setpoint/reference 

scheduling and how they can be used to include measurable and predictable 

disturbances. Also, it is imperative to be aware of how they shape constraints in the MPC, 

such as different upper and lower indoor air temperature bounds during occupancy hours. 

The requirements needed for the model's effective use in advanced optimal control 

methods like MPC should be clear. It is important to realize the necessity for the model 

to provide a forecast of occupancy behavior over the length of the prediction horizon, 

which is typically between 1-24 hours. Finally, the quality of presence and OB forecasts 

should be addressed while emphasizing that the most accurate predictions are obtained 

from dedicated sensor data such as PIR and cameras. 

4. Conclusion 
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The comprehensive guideline outlined in this paper presents an approach to integrating 

Occupant Behavior (OB) models into Building Performance Simulation (BPS) and 

Advanced Building Controls (ABC). It addresses a critical gap in the field of intelligent 

building systems and smart cities, offering a unified framework for documenting and 

implementing these models. The guideline emphasizes the importance of considering 

human behavior in the design and operation of smart systems, ensuring that technological 

advancements in buildings are not just innovative but also adaptable and responsive to 

the people who inhabit them. The first part of the guideline focuses on developing a 

framework for documenting occupancy and occupant behavior models in building 

performance simulation. This framework comprises four essential blocks: description, 

development, evaluation, and implementation. By standardizing these aspects, the 

guideline enhances the rigor, transparency, and reproducibility of OB models, making it 

easier for stakeholders to compare and implement them in various simulation scenarios. 

The second part provides a detailed approach to documenting OB models for advanced 

building controls. It outlines how well-documented OB models can be operationalized to 

enhance building performance in real-time. The guideline introduces a model-evaluation 

schema for benchmarking different models in field settings and offers recommendations 

on integrating OB models into building systems. This ensures that the models are not 

only theoretically sound but also practical and applicable in real-world settings. The paper 

also reviews the existing OB models, highlighting the need for a more comprehensive 

approach that covers various aspects of human behavior and considers both temporal 

and spatial scales. It underscores the importance of having a diverse range of input 

parameters to capture the multidimensional aspects of human behavior accurately. In 

conclusion, this guideline serves as a vital resource for researchers, developers, and 

practitioners in the field of intelligent building systems. It bridges the gap between 

academic research and real-world application, enabling the development of smarter, 

more efficient, and occupant-centric buildings.  
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